Advanced Medical Publishing 
Send e-mail to Advanced Medical Publishing
Book Search:   
<< Back  Frontlist Titles  About Us  How To Order  Update Profile  Home

Radiation Oncology (Physics)

Basic Therapy Physics

   Radiation physics
Treatment Planning
   Basic treatment planning
   3-D conformal therapy
   3-D conformal & IMRT
   Imaging in treatment planning
   Intensity modulated RT (IMRT)
   Inverse treatment planning
   CT-simulation
Imaging 
   Basic principle
   3D 
   CT
   MRI
   PET
   Ultrasound
IGRT
   Lung
   Neurosurgery
   Prostate
Dosimetry
   General
   Intraoperative
   Photon & electron
   Monitor Unit
   Neutron
Brachytherapy
   General
   Intra-vascular
   High-dose rate
   Low-dose rate
   Monte carlo dosimetry
   Pediatric
   Quality assurance
Dosimetrist
   Clinical
   Physics
   Brachytherapy
   Radiobiology
   CT-Simulation
Radiation Therapists
   Clinical
   Physics
   Radiation protection
Special Procedures
   Intraoperative
   Hyperthermia
   Neutron capture therapy
   Stereotactic radiosurgery
Linear Accelerator
Radiation & Cancer Biology Practice Examination
Radiation Detection 
Radiation Protection
Health Physics
Educational & Exam Materials 
What's New
Upcoming Titles
New Releases
AMP Releases
Hot Sellers


For new releases and newsletters, Sign-Up now!



 Radiation protection
Health Physics in the 21st Century 
 
Joseph John Bevelacqua 
Qty:      
Email this page to a friend
Description:

Presents emerging and maturing radiation-generating technologies that will affect the health physics and radiation protection profession

Summarizes the relevant technology and scientific basis
Extracts the relevant health physics issues to provide a unified, first-of-a-kind presentation of 21st century radiation generating systems
Contains twelve appendices that add background material and provide supporting information and enrichment to topics addressed in the text


Table of contents:

Preface.

Acknowledgments.

A Note on Units.

I Overview of Volume I.

1 Introduction.

References.

II Fission and Fusion Energy.

2 Fission Power Production.

2.1 Overview.

2.2 Basic Health Physics Considerations.

2.3 Fission Reactor History.

2.4 Generation II Power Reactors.

2.5 Generation III and IV Radiological Design Characteristics.

2.6 Generation III.

2.7 Generation IV.

2.8 Generic Health Physics Hazards.

2.9 Specific Health Physics Hazards.

2.10 Advanced Reactor ALARA Measures.

2.11 Radiological Considerations During Reactor Accidents.

2.12 Beyond Design Basis Events.

2.13 Other Events.

2.14 Probabilistic Risk Assessment.

2.15 Semi-Infinite Cloud Model.

2.16 Normal Operations.

2.17 Outage Operations.

2.18 Abnormal Operations.

2.19 Emergency Operations.

Problems.

References.

3 Fusion Power Production.

3.1 Overview.

3.2 Fusion Process Candidates.

3.3 Physics of Plasmas.

3.4 Plasma Properties and Characteristics.

3.5 Plasma Confinement.

3.6 Overview of an Initial Fusion Power Facility.

3.7 ITER.

3.8 ITER Safety Characteristics.

3.9 General Radiological Characteristics.

3.10 Accident Scenarios/Design Basis Events.

3.11 Radioactive Source Term.

3.12 Beyond Design Basis Events.

3.13 Assumptions for Evaluating the Consequences of Postulated ITER Events.

3.14 Caveats Regarding the ITER Technical Basis.

3.15 Overview of Fusion Energy Radiation Protection.

3.16 D-T Systematics.

3.17 Ionizing Radiation Sources.

3.18 Nuclear Materials.

3.19 External Ionizing Radiation Hazards.

3.20 Uncertainties in Health Physics Assessments Associated with External Ionizing Radiation.

3.21 Internal Ionizing Radiation Hazards.

3.22 Measurement of Ionizing Radiation.

3.23 Maintenance.

3.24 Accident Scenarios.

3.25 Regulatory Requirements.

3.26 Other Radiological Considerations.

3.27 Other Hazards.

3.28 Other Applications.

3.28.1 Cold Fusion.

3.28.2 Sonoluminescence.

3.29 Conclusions.

Problems.

References.

III Accelerators.

4 Colliders and Charged Particle Accelerators.

4.1 Introduction.

4.2 Candidate Twenty-First Century Accelerator Facilities.

4.3 Types of Twenty-First Century Accelerators.

4.4 Planned Accelerator Facilities.

4.5 Common Health Physics Issues in Twenty-First Century Accelerators.

4.6 Other Applications.

Problems.

References.

5 Light Sources.

5.1 Overview.

5.2 Physical Basis.

5.3 Overview of Photon Light Sources – Insertion Devices.

5.4 X-Ray Tubes.

5.5 Overview of Synchrotron Radiation Sources and Their Evolution.

5.6 X-Ray Radiation from Storage Rings.

5.7 Brightness Trends.

5.8 Physics of Photon Light Sources.

5.9 Motion of Accelerated Electrons.

5.10 Insertion Device Radiation Properties.

5.10.1 Power and Power Density.

5.11 FEL Overview.

5.12 Physical Model of a FEL.

5.13 FEL Characteristics.

5.14 Optical Gain.

5.15 Accessible FEL Output.

5.16 X-Ray Free-Electron Lasers.

5.17 Threshold X-Ray Free Electron.

5.18 Near-Term X-Ray FELs.

5.19 Gamma-Ray Free-Electron Lasers (GRFEL).

5.20 Other Photon-Generating Approaches.

5.21 X-Ray Induced Isomeric Transitions.

5.22 Gamma-Ray Laser/Fission-Based Photon Sources.

5.23 Photon Source Health Physics and Other Hazards.

5.24 Evaluation of Radiation Dose.

5.25 General Safety Requirements.

5.26 Radioactive and Toxic Gases.

5.27 Laser Safety Calculations.

Problems.

References.

IV Space.

6 Manned Planetary Missions.

6.1 Overview.

6.2 Introduction.

6.3 Terminology.

6.4 Basic Physics Overview.

6.5 Radiation Protection Limitations.

6.6 Overview of the Space Radiation Environment.

6.7 Calculation of Absorbed and Effective Doses.

6.8 Historical Space Missions.

6.9 LEO and Lunar Colonization.

6.10 GCR and SPE Contributions to Manned Planetary Missions.

6.11 Other Planetary Missions.

6.12 Mars and Outer Planet Mission Shielding.

6.13 Electromagnetic Deflection.

6.14 Space Radiation Biology.

6.15 Final Thoughts.

Problems.

References.

7 Deep Space Missions.

7.1 Introduction.

7.2 Stellar Radiation.

7.3 Galaxies.

7.4 Deep Space Radiation Characteristics.

7.5 Overview of Deep Space Missions.

7.6 Trajectories.

7.7 Candidate Missions.

7.8 Propulsion Requirements for Deep Space Missions.

7.9 Candidate Propulsion Systems Based on Existing Science and Technology.

7.10 Technology Growth Potential.

7.11 Sources of Radiation in Deep Space.

7.12 Mission Doses.

7.13 Time to Reach Alpha Centauri.

7.14 Countermeasures for Mitigating Radiation and Other Concerns During Deep Space Missions.

7.15 Theoretical Propulsion Options.

7.16 Spatial Anomalies.

7.17 Special Considerations.

7.18 Point Source Relationship.

Problems.

References.

V Answers and Solutions.

Solutions.

Solutions for Chapter 2.

Solutions for Chapter 3.

Solutions for Chapter 4.

Solutions for Chapter 5.

Solutions for Chapter 6.

Solutions for Chapter 7.

VI Appendixes.

A Significant Events and Important Dates in Physics and Health Physics.

References.

B Production Equations in Health Physics.

B.1 Introduction.

B.2 Theory.

B.3 Examples.

B.3.1 Activation.

B.4 Conclusions.

References.

C Key Health Physics Relationships.

References.

D Internal Dosimetry.

D.1 Introduction.

D.2 Overview of Internal Dosimetry Models.

D.3 MIRD Methodology.

D.4 ICRP Methodology.

D.5 Biological Effects.

D.6 ICRP 26/30 and ICRP 60/66 Terminology.

D.7 ICRP 26 and ICRP 60 Recommendations.

D.8 Calculation of Internal Dose Equivalents Using ICRP 26/30.

D.9 Calculation of Equivalent and Effective Doses Using ICRP 60/66.

D.10 Model Dependence.

D.11 Conclusions.

References.

E The Standard Model of Particle Physics.

E.1 Overview.

E.2 Particle Properties and Supporting Terminology.

E.3 Basic Physics.

E.4 Fundamental Interactions and Their Health Physics Impacts.

E.5 Cross-Section Relationships for Specific Processes.

References.

F Special Theory of Relativity.

F.1 Length, Mass, and Time.

F.2 Energy and Momentum.

References.

G Muon Characteristics.

G.1 Overview.

G.2 Stopping Power and Range.

References.

H Luminosity.

H.1 Overview.

H.2 Accelerator Physics.

References.

I Dose Factors for Typical Radiation Types.

I.1 Overview.

I.2 Dose Factors.

I.3 Dose Terminology.

References.

J Health Physics Related Computer Codes.

J.1 Code Overview.

J.2 Code Utilization.

References.

K Systematics of Heavy Ion Interactions with Matter.

K.1 Introduction.

K.2 Overview of External Radiation Sources.

K.3 Physical Basis for Heavy Ion Interactions with Matter.

K.4 Range Calculations.

K.5 Tissue Absorbed Dose from a Heavy Ion Beam.

K.6 Determination of Total Reaction Cross Section.

References.

L Curvature Systematics in General Relativity.

L.1 Introduction.

L.2 Basic Curvature Quantities.

L.3 Tensors and Connection Coefficients.

L.4 Conclusions.

References.

Index.


Joseph John Bevelacqua
586 Pages, May 2008
$180.00 U.S.
ISBN: 978-3-527-40822-1  
email: info@advmedpub.net
Qty:      
   
<< Back   Top of Page   Email this page to a friend
Radiation Oncology (Clinical)

Clinical Oncology

   Essential textbooks
IGRT
   Neurosurgery
   Prostate
   Lung
Special Topics
   Breast
   CNS
   Endocrine
   Head & Neck
   Gynecological
   Gastrointestinal
   Genitourinary
   Leukemias & Lymphomas
   Lung
   Neuro-Oncology
   Ophthalmic-Oncology
   Pediatric
   Prostate
    Skeletal
   Skin
Staging
   AJCC
   Color-matrix staging
   Staging atlas
   TNM classification
Surgical Oncology
Treatment Planning
   Basic treatment planning
   3-D conformal & IMRT
   3-D conformal therapy
   Intensity modulated RT (IMRT)
   CT-simulation
Physics
   Basic & clinical
Brachytherapy
   General
   Intra-vascular
   High-dose rate
   Low-dose rate
   Pediatric
   Quality assurance
Special procedure
   Intraoperative
   Stereotactic radiosurgery
   Neutron capture therapy
   Hyperthermia
Imaging
   Abdomen
   Breast
   Extremities
   Head & Neck
   Heart
   Pediatric chest
   Pelvis
   Spine
   Thorax
   CT 
   MRI
   PET
   Oncologic
   Ultrasound
Oncologic Nursing
Radiobiology
Educational Materials for Residents
   Physics
   Radiobiology
   Biological model
   Clinical
Research 
What's New




© 1994- Advanced Medical Publishing. All Rights Reserved.



Web Design by
Netphoria Inc.
Netphoria Inc.