Advanced Medical Publishing 
Send e-mail to Advanced Medical Publishing
Book Search:   
<< Back  Frontlist Titles  About Us  How To Order  Update Profile  Home

Radiation Oncology (Physics)

Basic Therapy Physics

   Radiation physics
Treatment Planning
   Basic treatment planning
   3-D conformal therapy
   3-D conformal & IMRT
   Imaging in treatment planning
   Intensity modulated RT (IMRT)
   Inverse treatment planning
   Basic principle
   Photon & electron
   Monitor Unit
   High-dose rate
   Low-dose rate
   Monte carlo dosimetry
   Quality assurance
Radiation Therapists
   Radiation protection
Special Procedures
   Neutron capture therapy
   Stereotactic radiosurgery
Linear Accelerator
Radiation & Cancer Biology Practice Examination
Radiation Detection 
Radiation Protection
Health Physics
Educational & Exam Materials 
What's New
Upcoming Titles
New Releases
AMP Releases
Hot Sellers

For new releases and newsletters, Sign-Up now!

 Health Physics
Biophysical Analysis of Membrane Proteins: Investigating Structure and Function 
Edited by: Eva Pebay-Peyroula 
Email this page to a friend

Meeting the need for a book on developing and using new methods to investigate membrane proteins, this is the first of its kind to present the full range of novel techniques in one resource. Top researchers from around the world focus on the physical principles exploited in the different techniques, and provide examples of how these can bring about important new insights.

Following an introduction, further sections discuss structural approaches, molecular interaction and large assemblies, dynamics and spectroscopies, finishing off with an exploration of structure-function relationships in whole cells.

Table of Contents:


The Editor.

List of Contributors.

Part I: Introduction.

1. High-Resolution Structures of Membrane Proteins: From X-Ray Crystallography to an Integrated Approach of Membranes (Eva Pebay-Peyroula).

1.1 Membranes: A Soft Medium?

1.2 Current Knowledge on Membrane Protein Structures.

1.3 X-Ray Crystallography.

1.4 Recent Examples.

1.5 Future Developments in X-Ray Crystallography of Membrane Proteins.

1.6 Conclusions.

Part II: Structural Approaches.

2. Membrane Protein Structure Determination by Electron Cryo-MicroscopyChristopher G. Tate and John L. Rubinstein). (

2.1 Introduction.

2.2 Single-Particle Electron Microscopy.

2.3 Structure Determination from 2-Dimensional Crystals.

2.4 Helical Analysis of Tubes.

2.5 Conclusions.

3. Introduction to Solid-State NMR and its Application to Membrane Protein–Ligand Binding Studies (Krisztina Varga and Anthony Watts).

3.1 Introduction.

3.2 Solid-State NMR.

3.3 Examples: Receptor–Ligand Studies by Solid-State NMR.

Part III: Molecular Interaction and Large Assemblies.

4. Analytical Ultracentrifugation: Membrane Protein Assemblies in the Presence of Detergent (Christine Ebel, Jesper V. Møller and Marc le Maire).

4.1 Introduction.

4.2 Instrumentation and the Principle of Typical Experiments.

4.3 General Theoretical Background.

4.4 Membrane Proteins: Measurement of Rs, Mb, M, and v.

4.5 Sedimentation Equilibrium Data Analysis.

4.6 Sedimentation Velocity Data Analysis.

4.7 Analytical Ultracentrifugation and SANS/SAXS.

4.8 Conclusions.

5. Probing Membrane Protein Interactions with Real-Time Biosensor TechnologyIva Navratilova, David G. Myszka and Rebecca L. Rich). (

5.1 Introduction.

5.2 Interactions of Extracellular Domains.

5.3 Interactions of Soluble Proteins with Lipid Layers.

5.4 Interactions of Proteins Embedded in Lipid Layers.

5.5 Interactions of Membrane-Solubilized Proteins.

5.6 Summary.

6. Atomic Force Microscopy: High-Resolution Imaging of Structure and Assembly of Membrane Proteins (Simon Scheuring, Nikolay Buzhynskyy, Rui Pedro Gonçalves and Szymon Jaroslawski).

6.1 Atomic Force Microscopy.

6.2 Combined Imaging and Force Measurements by AFM.

6.3 High-Resolution Imaging by AFM.

6.4 Conclusions.

6.5 Feasibilities, Limitations, and Outlook.

Part IV: Dynamics.

7. Molecular Dynamics Studies of Membrane Proteins: Outer Membrane Proteins and Transporters (Syma Khalid, John Holyoake and Mark S. P. Sansom).

7.1 Introduction.

7.2 Outer Membrane Proteins.

7.3 Cytoplasmic Membrane Transport Proteins.

7.4 Conclusions.

8. Understanding Structure and Function of Membrane Proteins Using Free Energy Calculations (Christophe Chipot and Klaus Schulten).

8.1 Introduction.

8.2 Theoretical Underpinnings of Free Energy Calculations.

8.3 Point Mutations in Membrane Proteins.

8.4 Assisted Transport Phenomena Across Membranes.

8.5 Recognition and Association in Membrane Proteins.

8.6 Conclusions.

9. Neutrons to Study the Structure and Dynamics of Membrane Proteins (Kathleen Wood and Giuseppe Zaccai).

9.1 General Introduction.

9.2 Introduction to Neutrons.

9.3 Introduction to Bacteriorhodopsin and the Purple Membrane.

9.4 Methods for Labeling.

9.5 Neutrons for Structural Studies of Membrane Proteins.

9.6 Neutrons for Dynamical Studies of Membrane Proteins.

9.7 Take-Home Message.

Part V: Spectroscopies.

10. Circular Dichroism: Folding and Conformational Changes of Membrane Proteins (Nadège Jamin and Jean-Jacques Lacapère).

10.1 Introduction.

10.2 Secondary Structure Composition.

10.3 Tertiary Structure Fingerprint.

10.4 Extrinsic Chromophores.

10.5 Conformational Changes upon Ligand Binding.

10.6 Folding/Unfolding.

10.7 Conclusion and Perspectives.

11. Membrane Protein Structure and Conformational Change Probed using Fourier Transform Infrared Spectroscopy (John E. Baenziger and Corrie J. B. daCosta).

11.1 Introduction.

11.2 FTIR Spectroscopy.

11.3 Vibrational Spectra of Membrane Proteins.

11.4 Applications of FTIR To Membrane Proteins.

11.5 Conclusions and Future Directions.

12. Resonance Raman Spectroscopy of a Light-Harvesting Protein (Andrew Aaron Pascal and Bruno Robert).

12.1 Introduction.

12.2 Principles of Resonance Raman Spectroscopy.

12.3 Primary Processes in Photosynthesis.

12.4 Photosynthesis in Plants.

12.5 The Light-Harvesting System of Plants.

12.6 Protection against Oxidative Stress: Light-Harvesting Regulation in Plants.

12.7 Raman studies of LHCII.

12.8 Crystallographic Structure of LHCII.

12.9 Properties of LHCII in Crystal.

12.10 Recent Developments and Perspectives.

Part VI: Exploring Structure–Function Relationships in Whole Cells.

13. Energy Transfer Technologies to Monitor the Dynamics and Signaling Properties of G-Protein-Coupled Receptors in Living Cells (Jean-Philippe Pin, Mohammed-Akli Ayoub, Damien Maurel, Julie Perroy and Eric Trinquet).

13.1 Introduction.

13.2 Fluorescence Resonance Energy Transfer (FRET).

13.3 FRET Using GFP and its Various Mutants.

13.4 BRET as an Alternative to FRET.

13.5 Time-Resolved FRET (TR-FRET) and Homogeneous Time-Resolved Fluorescence (HTRF).

13.6 New Developments in Fluorescent Labeling of Membrane Proteins.

13.7 Ligand–Receptor Interaction Monitored by FRET.

13.8 Fast GPCR Activation Process Monitored in Living Cells.

13.9 FRET and BRET Validated the Constitutive Oligomerization of GPCR in Living Cells.

13.10 FRET and BRET Changed the Concept of G-Protein Activation.

13.11 GPCRs as Part of Large Signaling Complexes.

13.12 Conclusion and Future Prospects.


Edited by: Eva Pebay-Peyroula
368 Pages, December 2007
$215.00 U.S.
ISBN: 978-3-527-31677-9  
<< Back   Top of Page   Email this page to a friend
Radiation Oncology (Clinical)

Clinical Oncology

   Essential textbooks
Special Topics
   Head & Neck
   Leukemias & Lymphomas
   Color-matrix staging
   Staging atlas
   TNM classification
Surgical Oncology
Treatment Planning
   Basic treatment planning
   3-D conformal & IMRT
   3-D conformal therapy
   Intensity modulated RT (IMRT)
   Basic & clinical
   High-dose rate
   Low-dose rate
   Quality assurance
Special procedure
   Stereotactic radiosurgery
   Neutron capture therapy
   Head & Neck
   Pediatric chest
Oncologic Nursing
Educational Materials for Residents
   Biological model
What's New

© 1994- Advanced Medical Publishing. All Rights Reserved.

Web Design by
Netphoria Inc.
Netphoria Inc.